Tracking Outbreaks of Febrile Infectious Diseases in India Using Google Trends

Pranab Chatterjee
Department of Community Medicine, University College of Medical Sciences

Abstract

Background: Search engine activity has been used as an indicator of disease incidence in developed countries. Non-availability of high quality data on Internet use and disease surveillance has hampered similar studies in developing countries.

Objective: To evaluate the correlation between search volumes for “fever” on Google and febrile infectious disease outbreaks reported by the Integrated Disease Surveillance Program.

Methods: Data on Google search volume for “fever” between January 2014 and December 2014 from India was downloaded from the Google Trends Insights website. Weekly data on outbreaks and case counts of infectious causes of febrile illnesses (dengue, PUO/fever, chikungunya, and typhoid) were obtained from the Integrated Disease Surveillance Program website. Spearman’s rho was calculated to estimate unadjusted correlation between search activities with weekly disease metrics. Time-series analysis of Google search query volume and disease metrics was done to ascertain whether they shared a common stochastic drift using the two-step Engle-Granger method.

Results: The unadjusted correlation was statistically significant between search activity and dengue outbreak (r=0.632, p<0.001) and cases (r=0.673, p<0.001); PUO/fever outbreaks (r=0.315, p=0.026) and cases (r=0.323, p=0.022); chikungunya cases (r=0.374, p=0.007); and total outbreaks (r=0.581, p<0.001) and cases (r=0.615, p<0.001). The test for cointegration of search activity showed stationarity of residuals with both disease outbreaks (p=0.048) and case counts (p=0.041).

Conclusions: There was agreement in the search volume with disease outbreaks and case counts. The time trends of search activity were cointegrated with both disease outbreaks and case counts on a weekly basis. This indicated that search activity and infectious diseases outbreaks and case counts were related. However, owing to the non-representative nature of the disease metrics and non-uniform access and limited use of Internet to seek health information, it would be inappropriate to use search engine query volume to predict or forecast disease outbreaks in the Indian context.

Objective

The objective of the study was to evaluate the correlation between search volumes for “fever” on Google and febrile infectious disease outbreaks reported by the Integrated Disease Surveillance Program.

Introduction

An increasing number of people from developed countries have been shown to use Internet search engines to seek health-related information [1] [2]. Naturally, this has led to the question of whether looking at online search volumes would be indicative of disease burdens. It was established by investigators from Google that it was possible to detect influenza epidemics in large areas with a high density of Internet users [3]. Investigators have also established that during the 2009 influenza season, which experienced very high disease activity, it was possible to predict the pandemic H1N1 waves in Manitoba using Google Flu Trends and emergency department triage data [4]. Similar results were replicated in South China [5], New Zealand [6], and thirteen European countries (Belgium, France, Hungary, Netherlands, Norway, Poland, Spain, Sweden, Switzerland, Bulgaria, Germany, Russian Federation, and Ukraine), [7] and in all cases there was good agreement between search engine query volumes and actual, reported disease burden. Gunther Eysenbach used this changing behavior pattern to propose a new research discipline: information epidemiology or infodemiology, which he defined to be “the study of the determinants and distribution of health information and misinformation, which
may be useful in guiding health professionals and patients to quality health information on the Internet” [8].

However, not many similar studies have been conducted in the setting of developing countries, where Internet search engine use and health-seeking behavior may be very different as compared to that in developed nations. In a study led by Google investigators, aggregated, anonymized search volumes for terms related to “dengue” were found to fit well with the actual number of cases of dengue reported from Bolivia, Brazil, India, Indonesia and Singapore [9]. In this study, some discrepancy in the fit was observed in the case of India possibly owing to issues of poor penetration and adoption of Internet in the rural areas.

With these factors in mind, the current study endeavored to look at search volumes for the search term “fever” and the corresponding number of outbreaks and cases of febrile infectious diseases (dengue, PUO (Pyrexia of Unknown Origin)/fever, chikungunya, and typhoid) reported by the Integrated Disease Surveillance Program (IDSP) in India.

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>55.1381</td>
<td>3.21775</td>
<td>17.1356</td>
<td><0.00001</td>
</tr>
<tr>
<td>Dengue Outbreaks</td>
<td>3.25505</td>
<td>0.760658</td>
<td>4.2793</td>
<td>0.00010</td>
</tr>
<tr>
<td>PUO/Fever Outbreaks</td>
<td>1.1477</td>
<td>0.815971</td>
<td>1.4065</td>
<td>0.16643</td>
</tr>
<tr>
<td>Chikungunya Outbreaks</td>
<td>-1.31275</td>
<td>1.51664</td>
<td>-0.8656</td>
<td>0.39132</td>
</tr>
<tr>
<td>Typhoid Outbreaks</td>
<td>1.33222</td>
<td>2.65835</td>
<td>0.5011</td>
<td>0.61871</td>
</tr>
</tbody>
</table>

- **Unit-root null hypothesis:** $a = 1$ Test without constant

- **Model:** $(1-L)y = (a-1)y(-1) + ... + e$

- **1st-order autocorrelation coefficient for e:** -0.016

- **F(2, 44) = 3.315 [0.0456]**

- **Estimated value of (a - 1):** -0.288812

- **Test statistic: tau nc(1):** -1.95427

- **Asymptotic p-value:** 0.04849
Tracking Outbreaks of Febrile Infectious Diseases in India Using Google Trends

<table>
<thead>
<tr>
<th></th>
<th>Coefficient</th>
<th>Std. Error</th>
<th>t-ratio</th>
<th>p-value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>58.2016</td>
<td>2.76838</td>
<td>21.0237</td>
<td><0.00001</td>
</tr>
<tr>
<td>Dengue Cases</td>
<td>0.0249777</td>
<td>0.00678216</td>
<td>3.6828</td>
<td>0.00062</td>
</tr>
<tr>
<td>PUO/Fever Cases</td>
<td>0.0212442</td>
<td>0.0172872</td>
<td>1.2289</td>
<td>0.22550</td>
</tr>
<tr>
<td>Chikungunya Cases</td>
<td>0.0526435</td>
<td>0.0335959</td>
<td>1.5670</td>
<td>0.12413</td>
</tr>
<tr>
<td>Typhoid Cases</td>
<td>-0.0226018</td>
<td>0.0368249</td>
<td>-0.6138</td>
<td>0.54246</td>
</tr>
</tbody>
</table>

Mean dependent var | 65.80000 | S.D. dependent var | 13.21564 |
Sum squared resid | 5513.641 | S.E. of regression | 11.06912 |
R-squared | 0.355733 | Adjusted R-squared | 0.298464 |
F(4, 45) | 6.211691 | P-value(F) | 0.000455 |
Log-likelihood | -188.5209 | Akaike criterion | 387.0417 |
Schwarz criterion | 396.6018 | Hannan-Quinn | 390.6823 |
rho | 0.571729 | Durbin-Watson | 0.838395 |

Unit-root null hypothesis: a = 1 Test without constant
Model: (1-L)y = (a-1)*y(-1) + ... + e
1st-order autocorrelation coefficient for e | 0.003
Lagged differences F(2, 44) = 2.361 [0.1061]
Estimated value of (a - 1) | -0.286492
Test statistic: tau nc(1) | -2.02102
Asymptotic p-value | 0.04149
Figure Legend

Figure A: Result of the OLS step for Model 1 (disease outbreaks and search volume)
Figure B: Result of the Augmented Dickey-Fuller Test on Residuals of Model 1 (disease outbreaks and search volume)
Figure C: Result of the OLS Step for Model 2 (case counts of diseases and search volume)
Figure D: Result of the Augmented Dickey-Fuller Test on Residuals of Model 2 (case counts of diseases and search query volume)
Figure E: Time series trends of Google Search volumes (secondary axis on the right) with number of cases of infectious diseases (left side, primary axis) causing fever per week
Figure F: Time series trends of Google Search volumes (secondary axis on the right) with number of outbreaks of infectious diseases causing fever per week
Figure G: Time series trends of Google Search volumes (right side, secondary axis) with total outbreaks (right side, secondary axis) and total cases (left side, primary axis) per week

Results & Discussion

RESULTS:
The unadjusted correlation was statistically significant between search activity and dengue outbreak ($r=0.632$, $p<0.001$) and cases ($r=0.673$, $p<0.001$); PUO/fever outbreaks ($r=0.315$, $p=0.026$) and cases ($r=0.323$, $p=0.022$); chikungunya cases ($r=0.374$, $p=0.007$); and total outbreaks ($r=0.581$, $p<0.001$) and cases ($r=0.615$, $p<0.001$).

In Model 1, the dependent variable was the Google search query volume; the independent variables in the model included outbreaks of dengue, PUO/fever, chikungunya, and typhoid. In Model 2, the dependent variable was the Google search query volume; the in-
dependent variables in the model included case counts (incidence) of dengue, PUO/fever, chikungunya, and typhoid.

Tables 1 and 3 show the result of the regression done in the first step of the Engle-Granger method for models 1 and 2 respectively. The residuals from each of the models were saved as another variable in Gretl and the results of the Augmented Dickey-Fuller Tests run on that variable for model 1 and 2 separately are shown in Tables 2 and 4 respectively.

Figure 1 shows time series trend between Google search query volume (measured on the secondary axis on the right) and the number of cases of infectious diseases causing fever. Figure 2 shows time series trend between Google search query volume (measured on the secondary axis on the right) and total outbreaks every week. Figure 3 shows the time series trend between Google search query volume and the total numbers of outbreaks and cases per week.

DISCUSSION:
The time series plots show a weak temporal association between the total numbers of outbreaks every week and the total number of cases of different infectious diseases causing fever every week and Google search query volume. The search activity goes up slightly before every spike in disease incidence. However, because the baseline search activity is very high, the specific effect of the incident disease is not very clear, unless the disease metrics spikes are large enough. For example, in Figure 3, a large spike in cases around weeks 34-36 show a corresponding spike in the search volume activity in the preceding weeks (around week 31-34).

When the time series are examined statistically, they are seen to have stationarity of the residuals, which means that there is a predictable response in the curve for Google search query volume with a change in the number of outbreaks or case counts. However, this is not as strong a relationship as had been previously demonstrated in the studies emanating from developed countries and the rejection of the unit root null hypothesis barely reaches statistical significance for both the outbreak-related model (p=0.048) and case count related model (p=0.041).

These discrepancies can be explained based on two main issues. The data obtained from the IDSP is probably not representative of the incidence of the diseases in the country. Moreover, because of the method by which the data is collected, this data is primarily sourced from the rural and peri-urban areas of India. However, though mobile connectivity has become ubiquitous in India, Internet penetration has been poor, owing to lop-sided economic development. Moreover, use of Internet to search for healthcare information is not a very well-recognized pattern. This behavior is even more restricted in rural areas, where, owing to lower socioeconomic status, poorer awareness levels and lower literacy rates, Internet utilization rates remain low.

Considering the limitations of the available data, it would, therefore, be inappropriate to extrapolate the findings to arrive at concrete conclusions about the utility of the data for modeling or forecasting or “now-casting” disease outbreaks. The trend, however, is encouraging because it shows that despite the myriad limitations, the data shows some consistency, which can be expected to improve once better health statistics are available and there is penetration of Internet utilization for healthcare information needs to peri-urban and rural India.

The study shows that the time trend of Google search query volume changes in a predictable manner with change in the total number of fever-causing infectious disease outbreaks per week as well as with the total number of cases of fever-causing infectious diseases per week. However, owing to the non-representative nature of the data on disease incidence and the poor penetration of Internet use for seeking healthcare information in the rural and peri-urban areas, from which the disease incidence and outbreak counts are primarily sourced, it is premature to use this model to create a forecasting or “nowcasting” system to identify infectious disease outbreaks before they assume epidemic proportions.

Penetration of the Internet in all parts of India is poor and use of the Internet for health information seeking is poorly defined. The disease counts (both cases and outbreaks) are likely to be an under representation since the Integrated Disease Surveillance Program (IDSP) is yet to be universalized in India. The disease metrics are based on data which
is predominantly sourced from rural and peri-urban areas, whereas the Internet use for health information seeking is likely to be higher in the urban areas.

Additional Information

Methods and Supplementary Material
Please see https://sciencematters.io/articles/201602000012. This study did not receive any funding support.

Ethics Statement
Not applicable.

Citations

